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ABSOLUTELY UNIFORM ILLUMINATION
OF LASER FUSION PELLETS

For direct driven laser fusion to be successful, the spherical fuel pellet
must be illuminated to a high degree of uniformity.1. Various symmetric beam-
target configurations have been proposed to achieve this uniformity. Most of
these designs are based on laser beams that are targeted on the spherical pellet
from the faces or vertices of the five Platonic solids (the tetrahedron, cube,

25  Given such symmetric targeting

octahedron, dodecahedron, and icosahedron),
of the laser beams, the level of uniformity still depends on the characteristics
of the laser beams (spot size on target, intensity profile) and pellet (plasma
scalelength, absorption, and refraction). A brief derivation is introduced here
that proves that absolutely wuniform illumination from multiple beam
configurations is possible in certain cases. These cases include configurations
based on four of the five Platonic solids (the tetrahedron is excepted), plus an
additional class of configurations that are less symmetric.

Assume, for the moment, that refractive effects are ignorable. This is
best satisfied when the plasma scalelength is small in comparison to the pellet
radius and the plasma is highly absorbing, a situation that accurately describes
shorter wavelength experiments, The absorbed energy density on the pellet

surface resulting from a single laser beam incident along the positive z axis

is:

E(0,p) = I[x(0,$),y(0,6)]A(8)cos(8) (1)

where A(9) is the fraction of incident energy absorbed at polar angle 8. The

beam is implicitly assumed to result from large F number optics, so that the

Manuscript approved October 28, 1983,
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beam intensity profile, I, remains unchanged along the axis z in the area of the
pellet. The total energy density is the superposition of many beams centered at
the points (8,4) on the pellet surface, and can be written as

E(6,9) = § I (Ei;)A(Yi)°°sYi (2)

i
Yi is the angle between the i-th beam axis and the point (8,¢), and 1(3-'14-) is
the beam intensity profile of the i-th beam in the plane orthogonal to its
propagation axis.,

Assume that all of the beams are identical, symmetric about their axis of
propagation (so that Ii{ii-'-) = I(Yi)), and that each beam is opposed by another
that is antiparallel to it and aimed at the point directly opposite on the

sphere, (n-0, ,n+¢i). Then for the special case that the beam intensity profile

L ———— g a

and the pellet absorption function combine so that:
I(Yi)A(Yi) = I _cosy, (3)

all angular dependence can be removed from the energy density on the pellet
surface.
To show this, insert (3) in (2) and use the identity cosy, = cosfcosf,  +

sinesinﬁicos(qai-ct). Rearranging the results, one finds:
E(0,$)/1 = (3 J cosze )cosze
! o E k k

+ (Esin%k %'sinzd} k)sinzesin2¢

3

+ (Esi.nzek §cosz¢jk)sin26cosz¢

i + 2(£coseksinek §cos¢jk)cosesin6cos¢
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+ Z(Ecoseksinek gsin¢jk)cosesinesin¢

+ 2(§sin29k %cos¢jksin¢jk)sinzecos¢sin¢ (4)

The targeting angles (Bk,¢jk) have been written so that a group of azimuthal
angles {¢jk;j=1,....,Jk} is associated with each polar angle Ok,k=1,...,x. The
total number of beams is thus N = ZEJk'

The first requirement in achieving energy uniformity is that the last three

terms of (4) are zero. This will occur when
Ysing. = Zcosp., = lcosp. sinp, =0 (5)
] ¢Jk J ¢Jk J ¢Jk ¢Jk

for each k. This is satisfied if the set of angles, {¢ , are symmetric in

jk}
reflections about the x and y axes. It is also satisfied when {¢jk} are equally
distributed about 2m:

{..} = 2m3/3 J=1, 0000, (6)
jk k k

This includes the case of odd J, (see appendix A). i
Next, the angles {¢jk} are further constrained by the condition: }
!

2 .2
§cos ¢jk = §51n ¢jk = Jk/z (N

The {¢jk} given by (6) satisfy this condition if Je > 2 (see appendix B). With

this requirement satisfied, the energy density is independent of azimuthal angle

and is given by:

2 2 2 2
E(O,#)/Io = (Echos Sk)cos 8 + 1/2(§Jksin Gk)sin 9

3
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When the coefficients of the cos?8 and sin8 terms are equal, the energy density

becomes independent of polar angle also. This requirement reduces to:

2
EJk(cos Bk -1/3) =0 (9)
If conditions (9), (7), and (5) hold, then
E(G,M/Io = N/6 (10)

and the energy density on the pellet has no angular dependence.

The simplest configuration for which the conditions (5), (7), and (9) can i
be satisfied is K=1 and J=3: (¢! = 0, 120, 240°, and 8 = 54.736°. These angles
are in the direction of :he faces of a cube, which is the simplest of Platonic
solids with opposing beam symmetry. The other higher order Platonic solids also
satisfy the uniformity constraints, as well as an infinite number of other less
symmetrical configurations. For example, the University of Rochester's 24 beam

Omega system3 (aiming from the vertices of a small regular rhombicuboctahedron)

belongs to this uniformity class. Lawrence Li_.vermore Laboratory's NOVA laser
system,s consisting of 5 sets of opposing beams ({¢} = 0, 72, 144, 216, 288°,
and 9 = 50°) is almost a member of this class (it would belong if 8 =
54.736°). In general, given K > 1 and Jy, there exists an infinite set of
configurations that satisfy the requirements.

It is possible to extend these results to more realistic situations.
Refraction considerations give rise to more general and complex conditions than
given by (1) through (3); the energy density resulting from a single laser beam

must satisfy:

E(9,8) = A(8) Sd8'I(6')£(8',0)cosd’ = Iocosze (11)




where £(6',0) is the transmitted fraction of a ray originally incident at
angle 9' and refracted to the angle 9, As a practical example, condition (1ll)
can be satisfied by a totally uniform beam incident upon an inverse square

electron density distribution.4

In general, there is 1little control possible over the absorption or
refraction of the light once it arrives on the pellet. 1Instead, some tailoring
of the absorbed energy may possibly be accomplished through control of the laser
intensity profile, perhaps by using apodized aperatures or other spatial

filtering methods.

The question of inter-beam interference effects should alsc be
considered. For coherent 1laser beams separated by a minimum angle ¥, the
spatial intensity fluctuations created by interference patterns have a maximum
spatial wavelength, A, given by A = ko/sinw ~ Xo where Ao is the laser

wavelength, and siny is of order  unity for typical sf(stems.6

Any
nonuniformities in the deposited energy produced by this highly modulated
intensity distribution are easily smoothed by thermal conduction in the region
separating the absorption and ablation regions of the laser fusion pellet.1
Interference effects are unimportant for incoherent illumination sources,

7 as well as ion or electron beams.

including induced incoherent laser beams

In conclusion, it has been shown here that it is theoretically possible to
illuminate a sphere in an absolutely uniform manner. The conditions for doing
so are: 1) that the energy density resulting from any one laser beam is given
by (11); 2) that to each beam belongs an opposing beam situated at the opposite

point on the saphere; and 3) that the beam targeting angles satisfy the

conditions (S), (7), and (9). These three constraints are satisfied for an




infinite set of confiqurations, including the cube and higher order Platonic
solids, These configurations can be used to achieve the high degreé of energy
depcsition uniformity required for proper implosion of laser fusion fuel

pellets,

The author would like to thank Dr. S. Bodner for valuable discussions and
suggestions. This work was done while the author was an NRC-NRL research

associate, and was supported by the U.S. Department of Energy and Office of

Naval Research.
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Appendix A

If {wj} 1s symmetric about reflections 1in the x and y axis, then for
each ¢j' there exists a @’j such that 93 = -p:'i, and another such that «pé = rr—qu.
Then clearly Lsing = 0, Lcosp., = 0, and Icos¢.sinp. = O. The {Q} given by

] ] J J b J J J
(6) for even J is obviously a special case of this., A separate situation exists

when J 1s odd. 1In this case, §51n¢j = 0 and stimjcosq)j = 0, since the set is

symmetric in reflection about the x axis. In addition,
§cos(2nj/J) = 1/2{§[cos(2nj/J) + cos(2n [3-11/3)1}; (a~1)
= cos(ﬂ/J)gcos(Zn[j-T/ZIJ)
The set of angles in the sum on the right side is the reflection of the ocoriginal
set about the y axis. But these sets are antisymmetric in reflection about the

Y axis:

ijlcos(znj/J) = -%cos(zﬂj/J +7m) = -gcos(m[jﬂ/zl/J) {A=2)

(]
(o]
~

and

Thus, if cos(nw/J) # 1 (oxr T # 1), we conclude that §cos(2wj/J)

therefore (6) satisfies condition (5) for odd and even J.




Appendix B

To show that (6) satisfies (7), note that

%cosz(ij/J) = 1/2(J + §cos(4nj/J)) (B-1)

» If J 18 even (J=2[', where [ 1s integer), then

§cosz(2nj/3) = 1/2(3 + Feos(2n3/T)) - 3/2 (B-2)
according to the results in Appendix A,

If J ts odd, then

§cosz(2wj/J) + §cosz(n—2nj/J) =J (B=3)
by (B-2). But

gcos2(2nj/J) = §cosz(w-2wj/J) | (B=4)
and therefore

§cosz(2wj/J) =32 (B=5)

Thus, {¢j} given by (6) satisfied condition (7) for even and odd J.




